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Abstract—Machine learning has revolutionized data analysis
and prediction, but quantum computing offers the potential to
unlock entirely new capabilities beyond classical limits. Though
powerful, today’s quantum hardware remains in the noisy
intermediate-scale quantum (NISQ) stage, with noise and qubit
count constraints limiting practical applications. This paper re-
views the framework of parametrized quantum circuits (PQCs), a
flexible approach designed to achieve quantum advantages within
the constraints of near-term quantum devices. Despite their
promise, PQCs face many open questions regarding use case-
specific design, data encoding, training efficiency, and robustness,
making them an active area of research in quantum machine
learning.

Index Terms—quantum machine learning, parametrized quan-
tum circuit, NISQ hardware, review

I. INTRODUCTION

Machine learning has reshaped fields such as computer
vision, natural language processing, and scientific research by
uncovering complex patterns in data and providing tools for
high-quality predictions. However, as datasets grow and tasks
increase in complexity, classical machine learning faces lim-
itations in computational efficiency and scalability. Quantum
computing — a paradigm that leverages quantum mechanics
principles like superposition and entanglement — has the po-
tential to overcome some of these barriers, offering advantages
in speed, memory efficiency, and model complexity beyond
classical limits. [1]

Despite the theoretical promise of quantum machine learn-
ing (QML), practical solutions are constrained by the limi-
tations of current noisy intermediate-scale quantum (NISQ)
devices. These constraints require innovative strategies to
achieve quantum advantage, with parametrized quantum cir-
cuits (PQCs) being one of the leading approaches [2]. PQCs
enable the construction of QML models that leverage quan-
tum properties but can be trained classically, akin to neural
networks, thus relaxing hardware requirements. This paper
explores PQCs as a foundational approach for advancing QML
in the NISQ era [3, 2].

II. WHY QUANTUM?

The quantum advantage stems from the fundamental dif-
ferences between classical and quantum information. While
classical bits are limited to states of either 0 or 1, qubits
can exist in superpositions of both: ag|0) + a;|1), where
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a2 + a? = 1. This extends to systems of multiple qubits,
enabling an n-qubit register to store all 2" possible states
simultaneously. In the context of QML, this has two key
implications: first, quantum systems can encode data using
exponentially fewer memory resources, potentially addressing
big data challenges intractable on classical hardware. Second,
superposition enables quantum parallelism, allowing quantum
algorithms to achieve speedups over classical ones. An ex-
ample is Grover’s algorithm for unsorted database searches,
which provides a quadratic speedup and can be applied to
accelerate model optimization in QML.

Another key aspect of quantum computing is its probabilis-
tic nature. While both classical and quantum operations are
deterministic, measuring a quantum system collapses its state
into one of the basis states, with a probability proportional to
the square of its coefficient (for a single qubit the outcome
is either |0) with probability a3 or |1) with probability a?).
This introduces a layer of complexity that distinguishes quan-
tum from classical computing. A fundamental consequence
is quantum entanglement, where quantum states become cor-
related in ways that exponentially increase their expressive
power. This enables quantum systems to uncover correlations
in data that would be difficult or impossible for classical algo-
rithms to detect. Additionally, quantum entanglement allows
for a richer feature space and more expressive models, as
the mathematical space describing quantum systems scales
exponentially. It is up to quantum software engineers and
researchers to develop innovative methods to exploit these
additional dimensions. [1]

ITI. NEAR-TERM QUANTUM HARDWARE

NISQ devices, with neutral atoms and superconducting
qubits as leading physical platforms, face significant limita-
tions that affect algorithm design. High levels of quantum
noise and short coherence times — the period a quantum
system retains its quantum state before it decoheres into
classical information — restrict computation duration and
complexity. An additional problem is the limited number
of qubits, typically tens to a few hundred, and poor qubit
connectivity, which restricts the types of entangled states that
can be created and limits the expressive power of quantum
algorithms. [1, 2]
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Fig. 1: Near-term QML framework. Training data is passed
through the PQC model, a cost function is calculated, and
parameters are updated via optimization methods. Only com-
puting the PQC model requires quantum resources, while all
other calculations are performed on classical hardware. Image
credit: [6]

Designing noise-resilient algorithms that rely on noise sup-
pression and mitigation, rather than on full error correction,
is essential for making practical use of current NISQ devices.
Quantum neural networks (QNNs) implemented as PQCs are
a key example, as they leverage quantum properties like
superposition and entanglement while being able to operate
effectively in noisy environments [4, 2, 5]. In general, many
theoretical quantum algorithms have unrealistic requirements,
such as long coherence times, high qubit counts and full
connectivity, that are far beyond what is achievable with
today’s hardware. There is a growing need to bridge this
gap by developing algorithms that can function within the
constraints of current NISQ devices, such as the framework
of QML with PQC discussed in the following section. [1, 2]

IV. QUANTUM MACHINE LEARNING

Near-term QML largely follows the classical machine learn-
ing framework. Following Fig. 1, the training data is passed
through a parametrized model, and a cost function is calculated
based on the difference between predicted and true values. Due
to the probabilistic nature of quantum computing, the PQC
runs multiple times to get an accurate expectation value for
the cost function. Optimization methods like gradient descent
then update the model parameters, and the cycle is repeated
until optimal accuracy. The key is that only the model (PQC)
requires quantum resources; all other calculations, such as cost
evaluation and parameter updates, are performed on classical
hardware. This hybrid approach leverages quantum circuits
to process data in a quantum-enhanced feature space while
maintaining efficiency by handling optimization and auxiliary
tasks on classical systems. This design keeps computation
times compatible with the coherence limits of NISQ devices,
enabling the model to exploit quantum advantages without
requiring prolonged, noise-sensitive quantum operations. All
steps of the process are active areas of research. [1, 3, 2]
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Fig. 2: Parametrized quantum circuit (PQC). The main el-
ements are single-qubit parametrized rotations (here R,(9))
and entangling gates that exploit quantum correlations (here
CNOT). Image credit: [8]

A. Input Encoding

Data encoding is crucial in QML, translating classical data
into quantum states [1]. A good example of the trade-off be-
tween memory efficiency and speed is provided by amplitude
encoding, which efficiently represents 2" data points with
only n qubits, but is too time-intensive for NISQ devices,
as encoding times often surpass qubit coherence limits [7].
This challenge drives active research, especially for tasks like
image classification, where current schemes don’t account for
spatial structure, underscoring the need for encoding methods
that balance fidelity with realistic hardware constraints [2, 4].

B. The model: Parametrized Quantum Circuits

As shown in Fig. 2, PQCs feature two main components:
learnable parameters via single-qubit parametrized rotations
and entangling gates that exploit quantum correlations [8].
Arranged in layers, these elements form quantum neural net-
works (QNNs) that can parallel classical architectures [4]. Re-
search indicates that QNNs may offer enhanced generalization
capabilities and resilience to noise, making them well-suited
for NISQ devices [5]. Notably, QNNs have been success-
fully run on hardware without error correction, demonstrating
practical feasibility [2]. However, scaling QNNs to larger
systems relevant to real-world applications and establishing
rigorous benchmarks for quantum advantage remain significant
challenges [1].

A recurrent issue in training PQC-based QML models
is the formation of barren plateaus, where the optimization
landscape flattens as circuit depth or qubit count grows,
leading to vanishing gradients and hindering parameter updates
by classical optimization methods [5]. This challenge can,
however, be mitigated through careful data encoding, the
design of improved quantum model architectures — such as
quantum convolutional neural networks (QCNNSs), which have
structures that reduce the occurrence of barren plateaus [9] —
or by using gradient-free optimization techniques [2].

V. CONCLUSION

QML with PQCs is a promising approach for near-term
practical applications, as it offloads the optimization process
to classical hardware, thus alleviating the hardware constraints
of current quantum devices [3]. To realize its full potential,
it is essential to bridge the gap between theoretical models
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and the limitations of existing hardware, providing proof of
practical quantum advantage. Further research into end-to-end
solutions, noise-resilient models, and even exploiting quantum
noise as a resource [10, 11] is critical for advancing the
field. Additionally, given the maturity gap between classical
and quantum technologies, it is crucial to explore diverse
sources of quantum advantage beyond just quantum speedup,
considering other aspects such as model expressiveness and
resilience, to maximize the impact of QML in real-world
applications. [1]
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