
1ST WORKSHOP ON ARTIFICIAL INTELLIGENCE FOR MULTIMEDIA 1

Graph Deep Generative Models
Octavian-Mihai Radu

AI Multimedia Lab
National University of Science and Technology

POLITEHNICA Bucharest
Bucharest, Romania

ORCID: 0009-0002-1634-5065

Bogdan Ionescu
AI Multimedia Lab

National University of Science and Technology
POLITEHNICA Bucharest

Bucharest, Romania
bogdan.ionescu@upb.ro

Abstract—Graphs are essential representations of complex
systems across diverse fields like biology, engineering, and so-
cial science. However, creating models that accurately capture
the intricate structure of real-world graphs and generate new,
realistic graphs is a significant challenge. This difficulty stems
from the unique characteristics of graphs: their high dimen-
sionality, the non-unique ways they can be represented, and the
intricate dependencies between their edges. These factors make
it difficult to define and sample from probability distributions
over graph space. Despite all the complexities associated with
graph representation and generation, Graph Deep Generative
Models have emerged as a promising tool for effectively learn-
ing and synthesizing graph structures. This work subsequently
introduces the Graph Convolutional Policy Network (GCPN),
a novel framework leveraging graph convolutional networks
within a reinforcement learning paradigm for goal-directed graph
generation. This approach is particularly relevant to molecular
graph generation, where the objective is to design novel molecules
exhibiting specific properties (e.g., drug-likeness, synthetic acces-
sibility) while adhering to fundamental chemical constraints (e.g.,
valency).

Index Terms—Graph Neural Networks (GNN), Recurrent
Neural Networks(RNN), autoregressive models, molecular design,
drug discovery

I. INTRODUCTION AND RELATED WORK

The development of generative graph models’ history has
numerous methods already proposed for generating graphs
based on predefined structural assumptions. However, a key
challenge still remains: developing methods capable of directly
learning generative models from a set of observed graphs.
Learning generative models directly from data is an important
step towards improving the fidelity of generated graphs. This
capability also paves the way for new applications, such as
discovering novel graph structures. Furthermore, it allows
for completing evolving graphs by learning the underlying
generative process. In contrast, traditional generative models
for graphs are typically hand-engineered. These models are
designed to simulate specific families of graphs. Thus, they
lack the capacity to learn a generative model directly from
observed data.

Traditional generative models for graphs, in contrast, are
hand-engineered for specific graph families, limiting their
ability to learn generative patterns directly from observed
data. Deep generative models, including VAEs [3] and GANs
[4], have significantly improved the ability to create realistic

and complex data, such as images and text. A fundamental
challenge in drug discovery and materials science lies in de-
signing molecules that possess specific desired properties. This

Fig. 1: Encoder-Decoder Graph Generation.

task is incredibly complex due to the large size of chemical
space. In this paper we will also describe Graph Convolutional
Policy Network (GCPN), an approach to generate molecules
where the generation process can be guided towards specified
desired objectives, while restricting the output space based on
underlying chemical rules.

II. DEEP GENERATIVE MODELS OVERVIEW

A. Generative Models

In general, for data generation (or in this case the graph
generation) we assume that data are samples from pdata(G)
distribution. Therefore, pdata is the data distribution, which is
never known to us, but we have sampled Gi ∼ pdata(G) from
it. Our goal in generative modeling is to learn a pmodel(G; θ)
distribution, parametrized by θ, that we use to approximate
pdata(G). After that the generation process is just sampling
from pmodel. The most common approach to sample from a
complex distribution is to:

• sample first from a simple noise distribution, like zi ∼
N(0, 1)

• transform the noise via xi = f(zi; θ)

©2024 Copyright for this paper belongs to his authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).
1st Workshop on Artificial Intelligence for Multimedia,
AI Multimedia Lab, CAMPUS Research Institute, POLITEHNICA Bucharest,
Bucharest, Romania, 8 November, 2024

1ST WORKSHOP ON ARTIFICIAL INTELLIGENCE FOR MULTIMEDIA 2

where f(.) is a deep neural network trained from the data we
have.

Most known architectures like Variational Auto Encoders
(VAEs) or Generative Adversial Nets (GANs) have two models
one for density estimation and one for sampling. In Figure 1.

Fig. 2: Auto-Regressive Graph Generation.

are represented a Graph Encoder as density estimation and a
Graph Decoder as sampling.

B. Auto-regressive Generative Models

In the case of auto-regressive models pmodel(G; θ) is used
for both density estimation and sampling. The general main
idea of auto-regressive modeling is to express the joint distri-
bution as a product of conditional distributions (chain rule):

pmodel(G; θ) =

n∏
t=1

pmodel(gt|g1, ...gt−1; θ)

In the graph generative modeling gt will be the t-th action
(add node, add edge).

An auto-regressive graph generation example is shown in
figure 2.

III. GRAPH RECURRENT NEURAL NETWORKS

Recurrent neural networks are part of the auto-regressive
family and widely used for data generation. In the case of the
graphs, one such approach is described in ”GraphRNN: Gen-
erating Realistic Graphs with Deep Auto-regressive Models”
[5]. I will briefly describe it how it works.

An undirected graph G = (V,E) is defined by its node set
V = {v1, . . . , vn} and edge set E = {(vi, vj)|vi, vj ∈ V }.
One common way to represent a graph is using an adjacency
matrix, which requires a node ordering π that maps nodes to
rows/columns of the adjacency matrix. More precisely, π is a
permutation function over V .

GRNN first define a mapping fS from graphs to sequences,
where for a graph G ∼ p(G) with n nodes under node ordering
π:

Sπ = fS(G, π) = (Sπ
1 , ..., S

π
n), (1)

where each element Sπ
i ∈ {0, 1}i−1, i ∈ {1, ..., n} is an

adjacency vector representing the edges between node π(vi)
and the previous nodes π(vj), j ∈ {1, ..., i− 1} already in the
graph:

Sπ
i = (Aπ

1,i, ..., A
π
i−1,i)

T ,∀i ∈ {2, ..., n}. (2)

For undirected graphs, Sπ determines a unique graph G, and
GRNN write the mapping as fG(·) where fG(S

π) = G.
Thus, instead of learning pmodel(G), whose sample space

cannot be easily characterized, GRNN sample the auxiliary π
to get the observations of Sπ and learn pmodel(S

π), which can

be modeled auto regressively due to the sequential nature of
Sπ . At inference time, GRNN can sample G without explicitly
computing pmodel(G) by sampling Sπ , which maps to G via
fG.

Given the above definitions, we can write p(G) as the
marginal distribution of the joint distribution p(G,Sπ):

pmodel(G) =
∑
Sπ

p(Sπ)I[fG(S
π) = G], (3)

where p(Sπ) is the distribution that we want to learn using
a generative model. Due to the sequential nature of Sπ ,
we further decompose p(Sπ) as the product of conditional
distributions over the elements:

p(Sπ) =

n+1∏
i=1

p(Sπ
i |Sπ

1 , ..., S
π
i−1) (4)

where we set Sπ
n+1 as the end of sequence token EOS,

to represent sequences with variable lengths. We simplify
p(Sπ

i |Sπ
1 , ..., S

π
i−1) as p(Sπ

i |Sπ
<i) in further discussions.

The algorithm proposed in [5] is summarized below.

GraphRNN inference algorithm

Input: RNN-based transition module ftrans, output mod-
ule fout, probability distribution Pθi parameterized by θi,
start token SOS, end token EOS, empty graph state h′

Output: Graph sequence Sπ

Sπ
1 = SOS, h1 = h′, i = 1

repeat
i = i+ 1
hi = ftrans(hi−1, S

π
i−1) {update graph state}

θi = fout(hi)
Sπ
i ∼ Pθi {sample node i’s edge connections}

until Sπ
i is EOS

Return Sπ = (Sπ
1 , ..., S

π
i)

The data flow diagram that corresponds to the GraphRNN
inference algorithm is in Figure 3. It can be observed the tow
recurrent neural networks: the node RNN and the edge RNN.
Start of Sequence (EOS) and End of Sequence (EOS) tokens
are used to start and stop graph generation.

IV. GRAPH CONVOLUTION POLICY NETWORK

Graph Convolution Policy Network (GCPN) proposed by
You et al. in 2018 [6], a general graph convolutional network
based model for goal directed graph generation through rein-
forcement learning. The model is trained to optimize domain-
specific rewards and adversarial loss through policy gradient,
and acts in an environment that incorporates domain-specific
rules.

A. Node Embeddings

In order to perform link prediction in Gt∪C, this model first
computes the node embeddings of an input graph using Graph
Convolutional Networks (GCN), a well-studied technique that

1ST WORKSHOP ON ARTIFICIAL INTELLIGENCE FOR MULTIMEDIA 3

Fig. 3: Graph Recurrent Neural Network.

Fig. 4: Drug Discovery Process.

achieves very good performance in representation learning for
molecules. GCPN uses the following variant that supports the
incorporation of categorical edge types. The high-level idea
is to perform message passing over each edge type for a
total of L layers. At the lth layer of the GCN, we aggregate
all messages from different edge types to compute the next
layer node embedding H(l+1) ∈ R(n+c)×k, where n, c are
the sizes of Gt and C respectively, and k is the embedding
dimension. In the same time, GCPN applies a L layer GCN
to the extended graph Gt ∪ C to compute the final node
embedding matrix X = H(L).

B. Action Prediction

The link prediction based action at at time step t is a
concatenation of four components: selection of two nodes,
prediction of edge type, and prediction of termination. Con-
cretely, each component is sampled according to a predicted
distribution governed by equation:

at = CONCAT(afirst, asecond, aedge, astop) (5)

The information from the first selected node afirst is incor-
porated in the selection of the second node by concatenating
its embedding Zafirst

with that of each node in Gt ∪C. Then
an MLP maps the concatenated embedding to the probability
distribution of each potential node to be selected as the second
node. Note that when selecting two nodes to predict a link,
the first node to select, afirst, should always belong to the
currently generated graph Gt, whereas the second node to
select, asecond, can be either from Gt (forming a cycle),
or from C (adding a new substructure). To predict a link,
another MLP takes Zafirst

and Zasecond
as inputs and maps to

a categorical edge type. Finally, the termination probability is
computed by firstly aggregating the node embeddings into a

graph embedding using an aggregation function AGG, and then
mapping the graph embedding to a scalar using an MLP.

C. Policy Gradient Training

Policy gradient based methods are widely adopted for
optimizing policy networks. GCPN adopts Proximal Policy
Optimization (PPO) as it is described in [9]. Pretraining a
policy network with expert policies if they are available leads
to better training stability and performance as shown in [10].
By looking at Figure 5, we can observe how cross entropy
gradient and policy gradient work together for optimizing
GCPN.

The application of GCPN can extend well beyond molecule
generation. The algorithm can be applied to generate graphs
in many contexts, such as electric circuits, social networks,
and explore graphs that can optimize certain domain specific
properties.

V. HOW TO EVALUATE GRAPH GENERATION

Evaluating the sample quality of generative models is a chal-
lenging task in general and evaluation requires a comparison
between two sets of graphs (the generated graphs and the test
sets). Whereas previous works relied on simple comparisons
of average statistics between the two sets, a more accurate
evaluation metrics that compare all moments of their empirical
distributions.

These metrics are based on Maximum Mean Discrepancy
(MMD) measures. The squared MMD between two sets of
samples from distributions p and q can be derived as [11]:

MMD2(p||q) = Ex,y∼p[k(x, y)] + Ex,y∼q[k(x, y)]

− 2Ex∼p,y∼q[k(x, y)].
(6)

In the case of GCPN, the kernel function k(x, y) will be the
L2 distance. To make it easier to compute, MMD using a set
of graph statistics M = {M1, ...,Mk}, where each Mi(G) is a
univariate distribution over R, such as the degree distribution
or clustering coefficient distribution.

Fig. 5: Graph Convolution Policy Network.

1ST WORKSHOP ON ARTIFICIAL INTELLIGENCE FOR MULTIMEDIA 4

REFERENCES

[1] Albert, R. and Barabasi, L. Statistical mechanics of complex networks.
Reviews of Modern Physics, 74(1):47, 2002.

[2] H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song. Syntax-directed varia-
tional autoencoder for structured data. arXiv preprint arXiv:1802.08786,
2018.

[3] Kingma, D. P. and Welling, M. Auto-encoding variational bayes. In
ICLR, 2014.

[4] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. In
NIPS, 2014.

[5] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton and Jure
Leskovec, GraphRNN: Generating Realistic Graphs with Deep Auto-
regressive Models, ICML 2018.

[6] Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, Jure Leskovec, Graph
Convolutional Policy Network for Goal-Directed Molecular Graph Gen-
eration, NeurIPS 2018.

[7] M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen. Molecular de-
novo design through deep reinforcement learning. Journal of Chemin-
formatics, 9(1):48, Sep 2017.

[8] X. Yang, J. Zhang, K. Yoshizoe, K. Terayama, and K. Tsuda. ChemTS:
An Efficient Python Library for de novo Molecular Generation. ArXiv
e-prints, Sept. 2017.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[10] S. Levine and V. Koltun. Guided policy search. In International Confer-
ence on Machine Learning, 2013.

[11] Gretton, A., Borgwardt, K. M., Rasch, M. J., Sch¨ olkopf, B., and Smola,
A. A kernel two-sample test. JMLR, 2012.

